
nT CUMENTATION PForm Approved
ocDoRT DO0CUMENTATION PAGE OMB No. 0704-088

AD-A204 915 b. RESTRICTIVE MARKINGS T

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approvedfor PU I* release;

2b. DECLASSIFICATION I-DOWNGRADING SCHEDULE "Atr~butlft 1,A.t,. -

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) -

AFOS-..TR 89-.u IL L'
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of Maryland (CP) (If applicable)
Dept. of Computer Science AFOSR

6c. ADDRESS (City, State, and ZIP"Code) b. ADDRESS (City, State, and ZIP Code)
Building 410 %

College Park, MD 20742 Boiling, AFB DC 20332-6448

Ba. NAME OF FUNDING/ SPONSORING T8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIF!CATION NUMBER
ORGANIZATION I(if applicable)

AFOSR [NM AFOSR -82-0303
8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Building 410 PROGRAM PROJECT TASK WORK UNITBoiling, AFB DC 20332-6448 ELEMENT NO. NO. NO ACCESSION NO
Bolling,_AFBDC_20332-6448_61102F

2304 A2
11. TITLE nlude Security Classification)

Parkllel Problem Solving System, PRISM
12. PERSONAL AUTHOR(S)

Jack Minker
13a. TYPE OF REPORT |13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) I15. PAGE COUNT

FINAL I FROM 11/86 TO 02/88 April 19, 1988 11
1. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Thyvthrust of the research under this grant was in the investigation of parallel problemso vIng.

The Accomplishments are:

1. implementation of PRISM - the parallel inference system which was develped earlier was in
plemented on the McMOMB machine. The McMOB machine is an outgrowth of theZMOB - 16 processo
machine developed under this grant in previous years.

2. Applications requireing parallel processing were implemented on the PRISM.

3. Algorithms, new features and control structures were investigated for the PRISM.

There were accomplishments in all the avoce which resulted insix publications in
in ccnferences proceedings and journals.

20, DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIONo UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT C] DTIC USERS I L'2- Ic _')
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Dr. Abraham Waksman j 202) 767-5027 NM
D Form 1473, JUN 86 Previous editions are obsolete. SE LAftC.#Z i-i S PAGE

FINALREPORT IOSR.Th. -

AFOSR GRANT 82-0303

NOVEMBER, 1986 -FEBRUARY, 1988

PRINCIPAL INVESTIGATOR:

PROFESSOR JACK MINKER

UNIVERSITY OF MARYLAND

Abstract

This final report presents a summary of research accomplished for the AFOSR under
grant number AFOSR 82-0303 for the period November 1986 - February 1988, to investigate
parallel problem solving. Under the current grant a parallel problem solving system, PRISM
(Parallel Inference System), that was implemented on the VAX/I1-780, the PYRAMID and
SUN machines, was ported successfully to McMOB and then to the BBN Butterfly parallel
architecture. The McMOB architecture is essentially the ZMOB architecture with 16 Motorola
68000 processors, upgrading the Z8OA microprocessors, interconnected in a ring structure.

Experimental testing of PRISM on McMOB was undertaken currnt year_ In addi-
tion, several enhancements were made to PRISM to permit expcrimcntal analyses to be made,
and to incorporate additional features to take full advantage of parallelism in a problem solving
environment. The tracing and statistical gathering packages were extended. An ability to
display AND-parallelism was added to the trace program which displays the execution of a
program on the parallel machines.

In addition to the above, work continued in the area of informative answers to be
presented to a user. Heuristic techniques were developed to determine which information to
display.

The system software for ZMOB/McMOB is now robust and considered completed. This
has allowed us to reemphasize our studies on parallel software. A new formalism for
slicing/splicing was developed which eliminates much of the run-time overhead of the tech-
nique, allowing for the development of a splicing compiler. Work has also focused on the
development of debugging tools for parallel software and the integration of artificial intelli-
gence techniques into debugging software. -

Accession For

NTIS GRA&I
DTIC TAB
Unannounced Q
Justr-cat ion

; / .) By.
Distribution/

Availability Codes

Avai'l and/or-
Dist Special

I0 81g 08?

1. Introduction

Under the current grant, a detailed design and implementation of a parallel problem solv-

ing system based on logic, PRISM (IPaRallel Inference SysteM), was implemented on the

McMOB parallel processor and ported, successfully to the BBN Butterfly parallel processor.

The McMOB machine has the identical architecture as ZMOB. It differs in that McMOB has

only 16 microprocessors attached to the belt and that these are Motorola 68000 microproces-

sors. PRISM was previously implemented using a simulated ZMOB belt on VAX, PYRAMID

and SUN machines, before it was ported to McMOB. PRISM underwent experimental testing,

was enhanced in a number of ways, and a large set of problems was tested using the system.

McMOB was also made operational on the software level. The operating system

software for McMOB is now fully functional and no further work is deemed necessary in that

area. Further research was performed in the development of program slicers and splicers for

automatic parallelization.

In section 2 we provide a description of the accomplishments under the current grant. In

the area of parallel problem solving, the initial PRISM has been fully implemented and tested

in a parallel environment. Extensive experimentation was begun on evaluating PRISM on a

parallel architecture. An approach has been developed to utilize heuristics to obtain informative

answers for queries to deductive databases and problem solving systems. In the area of paral-

lel systems hardware and software, the McMOB architecture has been completed, and focus

has shifted to the software issues involved. A new formalism has been developed allowing us

to exploit regularities in the structures of splicing, drastically reducing the run-time overhead

on splicing programs. Further, a prototype for a practical automatic debugging aid, using

Artificial Intelligence techniques, has been designed and implemented.

As a consequence of this work we have published 1 journal article, 1 book chapter, 8

conference papers, 2 technical reports, I newsletter article, 2 Master of Science scholarly

papers, and 2 Ph.D. theses during the present grant period. The list of papers and reports is

contained in the section tided, References.

2. Accomplishments on Effort During Period November, 1986- February, 1988

This section is subdivided into two major pans. The first section, 2.1, describes the

a.,Con;pi3hc4 research with :espect to PRISM - thl i:.; prcb;em s.lving systzm Thz

second skction, 2.2, describes the efforts for the development of parallel systems software and

1kaidwae for experimentation with parallel algorithms.

2.1. PRISM and Parallel Problem Solving on McMOB and Butterfly

There were seven major tasks in parallel problem solving undertaken under the current

grant. These are:

(a) Implement PRISM on McMOB
(b) Application Studies
(c) Alternative Machine Configurations - Design of Combined PSM/IDB Machine
(6) Develop New Features for PRISM
(e) Alternative Architectures
(f) Analyze Parallel Algorithms
(g) Informative Answers
(h) Control Structure Investigation

2.1.1. Implement PRISM on McMOB

We have successfully implemented PRISM on the McMOB parallel machine. The work

involved implementing a communications package that allows PRISM programs to communi-

cate over the McMOB belt. All other programs that had been running on the VAX, SUN, and

PYRAMJD machines were compiled for the McMOB machineq and ran successfully. This work

is complete, including the implementation of the EDB and Host processors. A paper has been

p,hlishe in he. igarch Newsletter that describe, the system. rGitfliano, Kohli and Minkeri

2.1.2. Application Studies

A series of application studies have been performed using PRISM on McMOB. Two

problem sets were developed. One was a set of problems known in the literature, and the

second was a set of programs generated from abstract trees. The following results have been

obtained: speed ups are generally obtainable when more processors are allocated to solve a

problem. SpLitting the intensional database component and the problem solving component of

tlli sy'item ijue separai. ,,iachines doe not appear to be useful. P:c!irrvinary indk ti-ons 're

that simple heuristics can be used to allocate problems to processors to achieve nntime sp"-d

up. Additional experimental work is required before final conclusions can be. made on this

latter observation. A report has been written that describes results obtained on the PRISM

experiments using the McMOB and Butterfly processors (Experiments with Parallel Logic Pro-

gramming in PRISW [Giuliano, et al.])

2.1.3. Alternative Machine Configurations - Design of Combined PSM/IDB Machine

A design for a combined PSM/IDB machine was developed and the design was imple-

mented on McMOB. Due to the studies described above, we believe that there is no need to

have separate PSM and IDB machines. Because of this, we have not implemented the EDB

communication protocol for the IDB.

2.1.4. Develop New Features for PRISM

The PRISM trace programs were modified to incorporate new features of the system. The

trace programs have now been modified so as to display AND-parallel execution and the capa-

bilities of the Constraint Solving Machine (CSM). The trace can run either off-line or on-line

with the McMOB system. The user can see the program executing in alternative machines at

the same time and can observe both OR-parallelism and AND-parallelism as it is executing on

the McMOB. The addition of these features allows us to use the trace to debug programs exe-

cuting on a parallel machine.

In addition, a list notation and a batch mode were added to the PRISM system. The

AND-parallel and OR-parallel PSMs have been combined into one system so that AND/OR-

parallelism can be executed simultaneously on PRISM.

2.1.5. Alternative Architectures

We have investigated the BBN Butterfly architecture to determine if it is possible to

transfer PRISM to that tmachine. In contrast to McMOB, the Butterfly machine is a shared

memory parallel architecture. We effected a transfer to the Butterfly by simulating the McMob

belt. As noted above, this system is operational on the Butterfly and experimental results have

been obtained using the system. We have also developed a plan to utilize the shared memory

system of the Butterfly and expect to have such a system implemented in the coming grant.

2.1.6. Analyze Parallel Algorithms

A new divide-and-conquer algorithm, called Formula Dissection was developed for pro-

positional satisfiability. The dissection step of the algorithm is implemented by bisecting the

underlying graph representation of the formula. The running time of Formula Dissection pro-

vides a constructive proof that Planar-3SAT, an NP-Complete class of SAT can be solved in

time exp(sqrt(n)) as opposed to exp(n). The Formula Dissection paradigm can also be applied

to solve other NP-Complete problems such as finding a Hamiltonian Cycle in a planar graph

and the Trihedral Scene Recognition problem in computer vision. A paper on this work was

submitted for publication in a journal. [Kasif, Reif and Sherlekar]

2.1.7. Informative Answers

Detailed heuristics have been developed to control the natural language output from

deductive databases to provide informative answers to queries posed by a user. A paper has

been published that describes some of the heuristics that have been developed. [Gal and

Minker]

Implementation of part of this effort has been accomplished. A technical report, [Lobo

and Minker], has been written and accepted for publication that describes a meta-program that

integrates integrity constraints into a deductive database to semantically constrain the search

for answers. The meta-program also has the ability to interface with a relational database.

This basic capability had to be developed prior to obtaining the full capability incorporating

the work in the previous paragraph.

2.1.8. Control Structure Investigation

A Ph.D. thesis has been written by Madhur Kohli [Kohli] that describes a compiler that

permits a user to develop an interpreter with a control capability specified for a particular

application. The compiler has been written and experiments have been conducted with the

compiler output. An interpreter with the PROLOG control strategy was implemented and com-

pared with PROLOG. Tests run on the VAX machine indicate that the compiled control

operates approximately half as fast as PROLOG. However, for control structures that have to

be implemented with a meta-interpreter on PROLOG, the compiled interpreter operates approx-

imately ten times as fast as the meta-interpreter. Hence, the approach is both significant and

viable for obtaining interpreters with control strategies different than that incorporated in PRO-

LOG. The results obtained are described in Kohli's thesis and in [Kohli and Minker].

2.2. Parallel Hardware and Software

There were four major tasks in parallel hardware and software undertaken under the

current grant. These were:

(a) Theoretical Slicing and Splicing
(b) Practical Slicing and Splicing
(c) Automatic Debugging Methods
(d) New Architectures

2.2.1. Theoretical Slicing and Splicing

A major advance in slicing/splicing was made this year in the form of a new methodol-

ogy for performing the splicing process. The previous method of preventing jumbled outputs,

due to processor asynchrony, required resequencing the outputs of different slices and thus each

slice was required to continually broadcast certain information to a central location. This

continuous transmission caused a prohibitive expense in terms of overhead for run-time execu-

tion, and made the rapid splicing of large programs practically impossible.

The new methodology is based on a formalization of the splicing problem utilizing graph

theory. It can be demonstrated from this formalization that certain constraints between outputs

are guaranteed to hold and thus, instead of having each splice continually broadcast synchroni-

zation information we need send only a small amount of information to a central processor

when outputs occur. Tags are attached to the output string which can be deciphered by the

coordinating processor and outputs can be guaranteed to be correctly sequenced. These tags

are a list of integers bounded by the number of output statements in a slice. We have designed

an algorithm which efficiently generates and decodes these tags at run-time. Using the graph

theoretic basis of this technique we have been able to provide a proof of the minimality of the

average lengths of tags.

The method does not require that the total behavior of a program be represented in its

slices. Nor does it require that the slices of a program be generated in any particular manner

or be implemented in any particular language. It only requires that each slice of a program

faithfully reproduce some portion of that program's original behavior. The major advantage of

the new method is that it radically reduces the overhead associated with reconstruction of the

output [Badger].

2.2.2. Practical slicing and splicing

A major bottle neck in the development of practical slicing/splicing systems has been the

run-time overhead associated with providing the synchronization information for the resequenc-

ing of output. Our efforts to produce a production quality compiler were stymied by this

bottleneck, and work shifted to the theoretical aspects of splicing. As reported above, the new

formalization of splicing has broken through that problem, and work is now proceeding on the

development of the slicing/splicing compiler for large programs.

2.2.3. Automatic Debugging Methods

Under the current grant, techniques have been explored for appiying diagnostic reasoning

t, pogra.' debuggihg. The difficulty of debugging paxal'cl Syst.ms soitt,ac, UOtaVLs gt:.mn-

as much automa.ic aid as possible. Under the current r-,ant we have flocused on design and

iniplemnation of a prototype system which uses At tozhn4qias to examine control flow infor-

maion and the values of a variable as the program runs. We have completed a prototype

implementation which examines several pieces of LISP code and have shown that the tech-

nique will generalize to other interesting classes of bugs. We have also formalized our tech-

nique and have demonstrated its validity on a wider variety of bug cases.

Our technique examines various "aspects" of the program as it executes good cases, and

compares those aspects with the same program running bad cases. As computation progresses

machine learning techniques are used to induce "expectations" of these aspects. An expecta-

tion is simply some predicate that satisfies the observed behavior. We then attempt to match

the expectation derived from the good cases with the aspect from the anomalous case. If they

fail to match, examining this failure provides some insight into the nature of the bug, particu-

larly into identifying where the error has occurred. [Mazurek]

An important aspect of this work has been an effort to make the dbugging techniques as

language independent as possible. While the learning and diagnostic techniques require At

inferencing capabilities, and are thus best implemented in an At language such as LISP. the

program control-flow analysis does not require that the data be a LISP program. To demon-

strate this we have used the multiple language capabilities of the Texas Instruments Explorer

machine. These capabilities permit shared memory communications between UNIX and LISP

processor boards. We have implemented a version of our prototype which runs on this architec-

ture permitting the LISP processor to monitor the function of programs running on the UNIX

board. Using this technique the LISP-based debugger can work on code written in C or other

procedural languages. A demonstration of this system will be presented at this year's Aneri-

can Association of Artificial Intelligence Conference in Seattle.

2.2.4. New architectures

The major accomplishment of this grant period was the completion of the McMOB sys-

"he " system I:a" 1ow been tested and dbugged and .e eper"iiig system if; c:onictzzly

functional. The system is now in use by departmenw personnel and suppor of the machine is

being handled by the department.

10. *Lobo, J. and Minker, J. A Metainterpreter to Semantically Optimize Queries in Deduc-

tive Databases. Technical Report CS-1861, Computer Science Department, University of

Marylnund. Jvne. 1087 (Accepted for Publication in the Conference on Expert Database

Systems, April, 1988).

11. Lyle, J. and Weiser, M., "Automatic Program Bug Location by Program Slicing,"

Conference on Computers and Applications, Peking, Peoples Republic of China, July

1987.

12. Mazurek, M. Expectation Formation and Its Use in Debugging, Proposed PhD Thesis,

Computer Science Department, University of Maryland, 1987.

13. Mazurek, M. Towards the Automatic Parallelization of Sequential Programs,, Scholarly

Paper, Computer Science Department, University of Maryland, 1987.

14. Minker, J. "Perspectives in Deductive Databases," Proceedings of the 6th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systemv, (Abstract of

Invited Talk) San Diego, Cal., March 1987.

15. *Minker, J. "Perspectives in Deductive Databases," Journal of Logic Programming,

1988:5, 33-60.

16. *Sherlekar, D. Graph Separator-Based Techniques in VLSI and Algorithms, Ph.D. Thesis,

Department of Computer Science, University of Maryland, 1987.

17. Weiser, M and Badger, L., "Automatic Detection and Use of Process Parallelism," (in

preparation).

18. Weiser, M. "Source Code!," IEEE Computer, November 1987, 66-74.

19. Weiser, M. and Shneiderman, B., "Human Factors of Software Design and Develop-

ment," in Handbook of Human Factors, ed. Gavriel Salvendy, John Wiley & Sons,

1987.

3. References

1. Badger, L. Splicing Programs, Scholarly Paper, Department of Computer Science,

University of Mar)yand, Jan. 1987.

2. Badger L. and Wei~er, M. "Minimizing Communication for Synchronizing Parallel

Dataflow Programs," Proceedings of the International Conference on Parallel Process-

ing, (to appear) July 19R8.

3. Callahan, J. and Weiser,M., "Norman Mailer: A Multiple Protocol Mail

Reading/Composing Program," IFP WG 6.5 International Working Conference on

MESSAGE HANDLING SYSTEMS (State of the Art and Future Directions), March

1987

4. Gal, A. and Minker, J. "Greater Cooperation between Database and User: Integrity Con-

straints Provide an Answer," Proceedings First Annual Conference on Natural Language

and Logic Programming, Vancouver, Canada

5. *Giuliano, M., Kohli, M. & Minker, J. "An Overview of the PRISM Project." Computer

Architecture News, Volume 15(1), March 1987, 35-42.

6. *Giuliano, M., Kohli, M., Minker, J., Rajasekar, A., & Sherlekar, D. Experiments with

Parallel Logic Programming in PRISM Technical Report Number 1887, Computer Sci-

ence Department, University of Maryland, July, 1987.

7. Karinthi, R. and WeiserM., "Techniques of Incremental Execution," Proceedings, ACM

Sigplan Symposium on Interpreters and Interpretive Techniques, SIGPLAN NOTICES 22,

7, June 1987, 38-44.

8. *Kohli, M. Controlling the Execution of Logic Programs, Ph.D. Thesis, Department of

Computer Science, University of Maryland, 1987.

9. *Kohli, M. and Minker, J. Specifying Control for Logic Programs Technical Report

Number 1935, Computer Science Department, University of Maryland, October, 1987.

